## 

## はじめに

現在，バイオ医薬品普及の観点からモノクローナル抗体やDNA，RNAなどの分析法が重要視されるように なった。バイオ医薬品は，かせ薬などのような低分子とは異なり，タンパラ質や抗体が対象となる。そのため，分子量が高分子へとシフトするためワイドボアカラムが必要となる。分離モードはサイズ排除クロマトグラ フィーやイオン交換，そして逆相など多くの手法が用いられる。
本研究ではサイズ排除クロマトグラフィー（SEC）を対象とした。SECは主にタンパク質や多糖類をはじめ とする高分子化合物を対象とした分析法の一つである。溶出パターンは分子量の高い順となら，複数成分で あっても個々の分子量が異なれば分離•同定において非常に䉍便な方法である。これを応用して，複数の夕 ンパク質を対象に分析を行ったので報告する。


SECカラムと逆相の違い

|  | 分離モード | パッファー | 温度 | 溶出 |
| :--- | :--- | :--- | :--- | :--- |
| SEC | サイス排除 | 高浱度 | 室温～ | アインクラティック |
| 逆相 | 疎水性相互作用 | 低濃度 | 高温 | グラジエント |

SECと逆相にはシステムや測定における条件が大きく異なる。SECではアイソクラティツ ク溶出を基本としゆっくりと溶出させる傾向にあるが，逆相ではタンパク質の種類によって保持が大きく異なるため，グラジエント溶出に加え，温度•流速を上げるなどの工夫が必要 となる。



Injection volume ： 2.0 ． 0 L

## 異なる細孔径および連結時におけるタンパク質のピーク形状

Develosil 100Diol－5（8．0x300）とDevelosil 300Diol（8．0x300mm） の比較において，細孔径の大きさに沿って保持•形状•分離が異なる。

|  | 100Diol－5 | 300Diol－5 | 連結 |
| :---: | :---: | :---: | :---: |
| チログロブリン | 保持されない | やや保持される | やや保持される |
| BSA | ほぼ重なるビーク を確認 | メインビークの前 <br> に別ビークを確認 | トリマー・ダイマー を認識 |
| オボアルブミン | メインピ-ク以外 <br> のものと重なる | 100Diolより分離 する | 大きく分離する |
| チトクロムC | メインピーク直前 のビークを認識 | 他ピークが認識さ れないが保持する | 保持，ピーク認識良好 |
| リボヌクレアーゼ | 他ビークとの分離良好 | やや重なる | 保持•分離良好 |

ターゲットが高分子に集中する際には，300Diol－5のみを連結させて分析することでより夾雑ピークを認識すると考えられる。SECの場合，チト クロムCとリボヌクレアーゼのような分子量の近いもの同士の分析には不向きとなるが，連結本数を増やす，微粒子系充填剤を使用することで解決 することができる可能性がある。

## 微粒子系充填剤におけるピーク

本研究では100Diolおよび30ODiolの3um充填剤を調製し，これを夕 ンパク質の分析に適用させた。
粒子径を5umから3umへ変更することにより，さらなるシャーブなピー ク形状および分離の改善が期待できる。



## Conditions； Colun Mobile phase <br> Mobie phase Fiow rate Temperature <br> Temperature Detection

Detection
Sample


Develosil $\mathbf{3 0 0 D i o l}-5(8.0 \times 300 \mathrm{~mm})$
150 mM S Sodiun 150 mM Sodium phosphate， $\mathrm{pH} 7 \mathrm{~mm}+0.3 \mathrm{M} \mathrm{NaCl}$
0．5mLmin
Ambient
UV22onm
：Ambient
：UV220nm
：1．Thyroglob
1．Thyroglobulin（M．W．$=670,000)$
2．BSA（M．W．$=67,000$ ）
2． $\mathrm{BSA}(\mathrm{M} . \mathrm{W} .=67.000)$
3．Ovaluumin（M．W．$=45,000$
4．Cytochrome $\mathrm{C}(\mathrm{M} . \mathrm{W} .=12.000)$
5．Ribonuclease $\mathrm{A}(\mathrm{M} . \mathrm{W}=12.700)$

$\begin{array}{cc}\text { System } & \text { ：Waters alliance }\end{array}$


Conditions；
Column
Column
Mobile phase
Flow rate
Flow rate
Temperature
Temperature
Detection
Sample ：UVient
：1．Thyroglobulin（M．W．$=670,000$ ）
2．BSA（M．W．$=67.000$ ）
2． BSA （M．W．W．$=67.000)$
3．Ovalbumin（M．W．$=45,000$

Injection volume ：10uL Ribonuclease $\mathrm{A}(\mathrm{M} . \mathrm{W} .=12,=12,700)$
Injection volume ： 1 ： 10 L
System
$:$ Waters alliance


## 抗体からのIgG精製

## 未处理の抗体

プロテインAリガンドによる IgGの精製

## HPLCへ注入

■試薬：シグマアルドリッチ社製 Monoclonal Anti－Goat／Sheep IgG＿Peroxidase antiody produced in mouse（PN：A9452） ■lgG精製キット：同仁化学社制 IgG Purification Kit－A（PN：AP01）

ブロテインAリガンドによるIgG精製

|  |  |
| :---: | :---: |
| \％ | \％ow |
| Conditions； |  |
| Column | ：300Diol－5＋100Diol－5（\％88．0x300mm） |
| Mobile Phase | $: 150 \mathrm{mM} \mathrm{Na} 2 \mathrm{HPO}_{4, \mathrm{pH}}$（ $0+0.3 \mathrm{M} \mathrm{NaCl}$ |
| Flow rate | ： $0.5 \mathrm{~mL} / \mathrm{min}$ |
| Temp． | ：Ambient |
| Detection | ：UV220 nm |
| Injection vol． | ： 10.0 uL |
| Sample | ：Purified lg |
| System | ：Waters alliance |



## Conditions； Column

Column ：Themo Fisher SCIENTIFC MAbPac SEC－1（4x300mm） Mobile Phase ： $150 \mathrm{mM} \mathrm{Na}_{2} \mathrm{HPO}_{4}, \mathrm{PH} 7.0+0.3 \mathrm{M} \mathrm{NaCl}$
Flow rate $\quad: 0.5 \mathrm{~mL} / \mathrm{min}$
Temp．：Ambient
$\begin{aligned} & \text { Detection } \\ & \text { Injection vol．}\end{aligned}:$ UV280 nm
$\begin{array}{ll}\text { Sjaction vol．} & : 10.0 \mathrm{uL} \\ : \mathrm{mAB}(2.2 \mathrm{mg} / \mathrm{mL})\end{array}$
System ：Thermo Fisher SCIENTIFIC Vanquish－H

ブロテインAリガンドによるlgG精製


Conditions；
Column
olumn P／N ／ 1 hsher SCIENTIFIC MABPac SEC－1 $14 \times 300 \mathrm{~mm}$ Moblie Phase： 150 mM Na
Flow rate ： $0.5 \mathrm{~mL} / \mathrm{min}$
$\begin{array}{ll}\text { Temp．} & \text { Ambient } \\ \text { Detection } & \text { UV280 }\end{array}$
$\begin{array}{ll}\text { Detection } \\ \text { njection vol．}\end{array}: 10.0 \mathrm{UL} 280 \mathrm{~nm}$
$\begin{array}{ll}\text { njection vol．} & : 10.0 \mathrm{LL} \\ \text { Sample } & : \text { Purified } \mathrm{Ig} G\end{array}$
System ：Thermo Fisher SCIENTIFIC Vanquish－H

